

5G xHaul Transport

Design Considerations, Strategies and Best Practices

Kashif Islam (kislam@cisco.com) 5G Solutions Architect @kuislam1 BRKSPG-2060

Agenda

- RAN Evolution Driving Mobile Backhaul Evolution
- Operator Defined xHaul Deployment Scenarios
- xHaul Design Consideration
- Summary

RAN/xHaul Evolution

The Big Picture:

Mobile Transport getting intertwined with RAN and Packet Core

RAN Decomposition into Access/Aggregation Networks, resulting in centralized, cloud, virtual RAN Architectures

Packet Core decomposing and getting closer to user equipment for better traffic efficiency e.g.

User Plane Function (UPF)

cisco life!

Understanding D-RAN Terminologies

BRKSPG-2060

Operator Defined xHaul Deployment Scenarios

cisco live!

Operator Defined xHaul Deployment Scenarios*

5G CRAN with Fronthaul and Collocated DU/CU

5G C-RAN Fronthaul with LTE Backhaul Coexistence

5G C-RAN with Midhaul and Collocated RU/DU

5G C-RAN Midhaul with LTE Backhaul Coexistence

cisco Live

Midhaul Connection

Backhaul Connection

* As specified in O-RAN xHaul Packet Switched Network Architecture available at https://www.o-ran.org/specification-access

Operator Defined xHaul Deployment Scenarios*

5G CRAN Fronthaul and 4G Fronthaul Coexistence

FH-CSR

FH- Agg

* As specified in O-RAN xHaul Packet Switched Network Architecture available at https://www.o-ran.org/specification-access

cisco Live!

Design Considerations

xHaul Design Considerations

IP Bandwidth Calculations

Domain Specific

xHaul Domains Latency Limitations Topology Considerations

Technical

Transport underlay & Services Redundancy Transport Scaling Automation

Logistical

Cell site locations

BBU Hotel

RAN to IP Dimensioning Then

RAN to IP Dimensioning Now

Hey IP Folks,

As part of our 5G expansion, we are planning 5k MacroSites with 3 sectors, 6 carriers each. We have acquires some new sub-6GHz Mid Bands spectrum that we will use with 4T4R MIMO We'd use Open vRAN where possible with both CPRI split 7 and 2, but may have to use split 8 only for legacy LTE sites. Please prepare your IP backhaul accordingly with Local and Regional DC to host compute for DU and CU.

The IP Team

The RAN Gang

Deciphering RAN Implications on Transport Design

RAN Clues	Transport Implications	Design Considerations		
3 Sectors, 6 Carriers, Midbands, 4T4R MIMO	Calculate BW for all carriers and Bands Total BW per SITE for sectors/MIMO	Choose appropriate speed links and network BW capacity		
O-RAN, where possible	Open Interfaces Possibly multivendor RU/DU/CU	Standardized Ethernet based CPRI transport May require interop test/integration of RAN		
CPRI Split 7 and 2	xHaul transport with dual split Both Fronthaul and Midhaul domains Split 7's implication on Bandwidth	Plan for Edge and Regional DCs to host RAN Calculate appropriate bandwidth in each domain L2/L3 VPN services between RU/DU/CU/5G-Core		
Split 8 only for Legacy LTE	Front haul and Backhaul only Traditional C-RAN Arch for LTE Proprietary CPRI interface b/w RU, BBU	Use CPRI capable FH routers Bookended FH CSR and FH Agg deployment Plan for appropriate CPRI bandwidth		

Fronthaul/Midhaul/Backhaul Calculation

Single Cell Site/3 Sector 6 Carriers

PRB=Physical Resource Block Statistical Multiplexing (Statmux)=1Max+2 Average

Band Numb er	Band	Bandwidth [MHz]	MIMO/MIMO Layers	Fronthaul Data Rate (Single Sector Peak) CPRI/ORAN Gbps	FH Data Rate ("3" Sectors) CPRI/ORAN Gbps	Midhaul Gbps	Backhaul Gbps
5	850 MHz	10	4T4R	2.45 (CPRI option 3)/0.70	7.35/1.40	0.23	0.20
8	900 MHz	10	4T4R	2.45 (CPRI option 3)/0.70	7.35/1.40	0.23	0.20
9	1.8GHz	20	4T4R	4.9 (CPRI option 5)/1.40	14.7/2.80	0.47	0.40
41	2.6GHz	20	4T4R	9.8 (CPRI option 7)/1.40	29.4/2.80	0.47	0.40
n78	3.5GHz	100	64T64R/8 layers	15.29	30.59	4.44	3.78
n257	28GHz	400	128T128R/4 layers			6.5	5.3
Total					89.39/39 Gbps	12.34 Gbps	10.28 Gbps

Fronthaul Interface Required=100G/50G Midhaul Interface Required=25G Backhaul Interface Required=25G

xHaul Transport and Data Center Integration

Latency and Distance Considerations across xHaul Domains

CPRI Interface Evolving towards Open RAN

Driving towards open standards for RAN Interfaces

xHaul Device Selection – CSR Interface

Other xHaul Technical Considerations

Programmable Underlay

EVPN Overlay

Edge DC's for vRAN

Timing & Synchronization

Transport SDN & Automation

Summary

RAN Evolution Summary

Distributed RAN – Each Cell site has Antenna's, Radio Unit or Remote Radio Head and Baseband Unit (BBU)

Centralized RAN – BBU is centralized, still closed system, limited real-estate benefits, uses CPRI Fronthaul

Cloud/Virtual RAN – BBU is virtualized, a step towards COTS hardware

vRAN (Functional Splits) – BBU split into DU and CU. Requires Front Haul, MidHaul and Backhaul ... xHaul

Open vRAN/ORAN/OvRAN – O-RAN alliance for open interfaces, usecases, arch etc

Design Considerations Summary

- Packetized FrontHaul Latency Consideration
 - Bookended Solution 25usec latency between 2xNCS540's
 - 75/100 usec budget for transport
 - 15km max (5us x 15km = 75usec) if using P2P link
 - Consideration for additional devices if ring topology is used
- Bandwidth consideration
 - D-RAN: 4G/LTE, for the most part had sub 1G speed from BBU to CSR
 - CPRI is highly dependent upon split options 3, 5, 7, 8
 - Split functionality (e.g. option 3 has more processing at DU hence lower BW than split 8)

Software Defined Mobile Transport Networks

5G Network Transport Evolution

Supporting Sessions

BRKSPM-2001 5G Converged SDN Transport

BRKSPM-2000 5G Access and DC Edge

BRKSPG-2065 Packet Based Front Haul

BRKSPG-2060 5G Transport: Design Strategies

Thank you

