cisco

cisco

Path to an Intent based Transport SDN Infrastructure:

Segment Routing and EVPN Network Evolution Strategies and Usecases

Kashif Islam – Sr. Solutions Architect @kuislam1

BRKSPG-2014

Agenda

- The Case for Intent based Network Transport
- Transport Network Evolution
- BGP VPN Services Evolution
- Application Driven, SDN Ready Transport Networks
- Summary

Glossary

- SR Segment Routing
- SRTE Segment Routing Traffic Engineering
- PCE— Path Computation Element
- SR-PCE Segment Routing Path Computation Element
- PCC Path Computation Client
- PCEP Path Computation Element Protocol

- BGP-LS BGP Link State Protocol
- NSO Network Services Orchestrator
- EPE Egress Peer Engineering (SR SID for eBGP Peers)
- · ODN On Demand Next Hop

The Case for Intent based Transport Network

You make customer experience possible

Forecast – Growth Ahead !!

14.6B M2M

Connections by 2022 (51% of total)

12x Growth VR/AR

3.6x more devices than people

28.5B

Connected Devices

3.6 devices/person 85gbps pp/mo

More !!!!

Avg Broadband Speed to Double!!

5.7 billion mobile users in 2022**

3X global traffic increase**

More Services More Service Requirements!!

High Bandwidth SW Updates Sporting Events

IOT

M2M Non-Critcal Low intensity Bursts Smart Services

Entertainment

AR, VR, Gaming Upsell Opportunities User Experience

Mission Critical

Ultra Reliable Low Latency Public Health Self Driving Cars Create your own Slice Industry Verticals Security, 5G

Drivers for Intent based networks !!!

What is Intent!!

in-'tent – noun: the act or fact of intending

in-'tent – adjective: directed with strained or eager attention

What is Intent!!

in-'tent – noun: the act or fact of intending

in-'tent – adjective: directed with strained or eager attention

in-'tent – networking: use of application specific algorithm(s), with specific constraints, directing packets to traverse a particular set of links and/or nodes in an effort to provide a pre-determined SLA

Evolving Transport Networks For SDN

What Makes up an Intent Based Network?

What, Why and How

- Ability to specify path of the packet by the source; not send to Next Hop and hope for the best
- Allows for path control at the source; make possible an "Intent based Path"
- Implemented using Segment Routing

BRKRST-2124: Introduction to Segment Routing BRKRST-3009: Troubleshooting Segment Routing

What Makes up an Intent Based Network?

What, Why and How

- Mechanism to learn detailed multi-domain topology with link-level attributes
- Required to create an end to end path across domains based on a "forwarding intent"
- BGP Link State (BGP-LS) used to learn IGP/BGP topology with all relevant link/node attributes
- Topology information may be passed to external applications for "Software Defined" path calculation

What Makes up an Intent Based Network?

What, Why and How

- With topology info and source-routing, an "intentbased" path can be calculated
- Ability to provide pre-defined SLA
- Dynamically adjust traffic path when network state changes (e.g. latency change on a link)
- Path calculation can be done on Headend or on centralized "Path Computation Element" (PCE)
- PCE can provide calculated path to nodes

BRKRST-3122: Segment Routing Technology Deepdive and Advanced Usecases

Why Intent Based Networking?

A Foundation for Network Transformation

BRKSPG-2014

Transport Network Evolution

You make the power of data possible

Transport Network Evolution

Simplified

Intent Driven Application Driven, SDN Ready

Network Evolution and Simplification Journey

	Legacy	Existing	Next Gen
Technology Arch.	IP/MPLS	Unified MPLS	Segment Routing
Provisioning			
Programmability			
Services (L2/L3 VPN)	LDP		
Scaling Mechanism			
TE, FRR	RSVP		
Overlay Protocol	LDP		
Connectivity Protocol	IGP		

Network Evolution and Simplification Journey

	Legacy	Existing	Next Gen
Technology Arch.	IP/MPLS	Unified MPLS	Segment Routing
Provisioning			
Programmability			
Services (L2/L3 VPN)	LDP	LDP BGP	
Scaling Mechanism		BGP-LU	
TE, FRR	RSVP	RSVP	
Overlay Protocol	LDP	LDP	
Connectivity Protocol	IGP	IGP	

Network Evolution and Simplification Journey

	Legacy		Existing		Next Gen	
Technology Arch.	IP/MPLS		Unified MPLS		Segment Routing	
Provisioning					NETCONF, YANG	
Programmability					Path Computation Element (PCE)	
Services (L2/L3 VPN)	LDP	BGP	LDP	BGP	BGP	
Scaling Mechanism			BGP-LU			
TE, FRR	RS'	RSVP		VP	Segment Routing w/ IGP	
Overlay Protocol	LD)P	LDP		Segment Routing W/ IGP	
Connectivity Protocol	IG	P	IGP			

Where We Are ...

Current Unified MPLS Baseline

Where Do We Want to Go...

Intent Based SDN Ready Transport

Where Do We Want to Go...

Intent Based SDN Ready Transport

Where Do We Want to Go...

Intent Based SDN Ready Transport

How Do We Get There?

Multi-Step Network Evolution

- Ships in the Night:
 Minimal Architectural Change
 - 2 Introduce Central Intent Based Path Control
- 3 Simplify Routing Design
- New Features to Support Value Add Services
- Ready for Software Driven Usecases

Introducing Segment Routing Underlay Transport

Ships in the Night: MPLS-LDP Based Service Transport

- No Architectural Changes, minimal Configuration Changes
- All services continue using MPLS-LDP
- BGP still used for multi-domain path
- Intent cannot be defined yet, as services use MPLS-LDP Transport

Introducing: Segment Routing Underlay Transport

Ships in the Night: MPLS-LDP Based Service Transport

- No Architectural Changes, minimal Configuration Changes
- · All services continue using MPLS-LDP
- BGP still used for multi-domain path
- Intent cannot be defined yet, as services use MPLS-LDP Transport

```
router isis 1
  address-family ipv4 unicast
  metric-style wide
  segment-routing mpls [sr-prefer]
!
interface Loopback0
  passive
  address-family ipv4 unicast
  prefix-sid index 1
```


Introducing: Segment Routing Underlay Transport

Ships in the Night: SR Based Service Transport

- No fundamental architectural Changes
- BGP-SR used for Multi-Domain path
- Intent can now be defined on the headend using SRTE
- All path calculation done on headend
- Network Visibility required on headend

Introducing Segment Routing Underlay Transport

Ships in the Night: SR Based Service Transport

- No fundamental architectural Changes
- BGP-SR used for Multi-Domain path
- Intent can now be defined on the headend using SRTE
- · All path calculation done on headend
- Network Visibility required on headend

```
segment-routing
  traffic-eng
  policy POLICY1
    color 20 end-point ipv4 1.1.1.4
    candidate-paths
    preference 100
    dynamic
    metric
    type latency
    affinity
    exclude-any name high_cost_link
```


Centralized Traffic Control and Compute

PCE-PCC Relationship

- Offload Intent Based Path computation
- SR-PCE, as XRv9K device, can take requests to compute path
- Requesting node in called Path Computation Client (PCC)

Centralized Traffic Control and Compute

PCE-PCC Relationship pce Offload Intent Based Path computation address ipv4 6.1.1.100 rest SR-PCE take path compute requests from Path Computation Client (PCC) segment-routing traffic-eng SR-PCE must have topology view pcc source-address ipv4 6.1.1.1 REST API pce address ipv4 6.1.1.100 Uses REST NBI to provide data to application **SR-PCE** RR RR IPv4+Label IPv4+Label IPv4+Label IPv4+Label IPv4+Label

Centralized Traffic Control and Compute

PCE-PCC Relationship pce Offload Intent Based Path computation address ipv4 6.1.1.100 rest SR-PCE take path compute requests from Path Computation Client (PCC) segment-routing traffic-eng SR-PCE must have topology view pcc source-address ipv4 6.1.1.1 REST API pce address ipv4 6.1.1.100 Uses REST NBI to provide data to application **SR-PCE** RR RR IPv4+Label IPv4+Label IPv4+Label IPv4+Label IPv4+Label

Intent Based Programmable Network: Transport now Ready for SDN

#CLUS

Reminder: How Do We Get There?

Multi-Step Network Evolution

Reminder: BGP-LU, with MPLS-LDP Design

Simplify Routing with SR-PCE Useage

35

What Just Happened?

Access Nodes don't need BGP/IGP route to remote service nodes

Simplified, scalable routing: No L1/L2 leaking, No BGP-LU routes

PCE could be part of both L1/L2 areas and have reachability to Access Nodes

RR could be part of both area to provide VPNv4 Route Exchange

Reminder: How Do We Get There?

Multi-Step Network Evolution

On-Demand Next Hop (ODN)

Value Proposition

Config Simplification

- No need for a per-destination intent policy
- ODN works as a "template"
- Specify only intent and color
- Intent applies to all routes/dest that matches the color

OnDemand Policy Instantiation

- Intent can be pre-configured
- No policy is instantiated or programmed
- Policy only instantiated when a route is received for that Intent
- Policy removed, once the route goes away, freeing up resources
- Very helpful for bursty, sporadic traffic
 .. Like IOT

Flex Algo & Segment Routing TE

Segment Routing (SR):

Use Default IGP Metric to forward traffic (**Default Algo**) Ability to define a SID-List at the source for traffic forwarding

Segment Routing Traffic Engineering (SRTE):

Intent based forwarding that goes beyond IGP Best Path forwarding Uses SID List to influence forwarding path

Flex-Algo

"Intent" become additional fwdg logic (i.e. algo) in IGP, enabling domain level forwarding tables IGP distributes multiple metrics/Affinities – SPF, Low Latency, Constrained Nodes/Link etc A Network node may or may not participate in Flex Algo, allowing sub-topologies to be created Multiple Algo's may be operational in a given Network topology

Network Slicing through Flex-Algo

```
router isis 1
net 49.0001.0000.0000.0002.00
flex-algo 128
  metric-type latency
interface Loopback0
 address-family ipv4 unicast
  prefix-sid index 2
  prefix-sid algorithm 128 absolute 16802
segment-routing
  traffic-eng
    on-demand color 100
       dynamic
           sid-algo 128
```


Network Slicing through Flex-Algo

```
router isis 1
net 49.0001.0000.0000.0002.00
flex-algo 128
  metric-type latency
interface Loopback0
 address-family ipv4 unicast
  prefix-sid index 2
  prefix-sid algorithm 128 absolute 16802
segment-routing
  traffic-eng
    on-demand color 100
       dynamic
           sid-algo 128
```


Intent Statement: Secure Slice Usecase

- Financial customer asks for a secure path E2E
- 2. Requests link-level encryption for any of its traffic
- 3. Using Lowest Latency possible is still part of their "intent"
- 4. Your solution: You will create a "Secure Network slice" using Flex algo that would avoid non-encrypted links

Reminder: How Do We Get There?

Multi-Step Network Evolution

New Services New Service Requirements!!

High Bandwidth SW Updates Sporting Events

Intent Definition:
Bandwidth Signaling

IOT

M2M Non-Critcal Low intensity Bursts Smart Services

Intent Definition:

Entertainment

AR, VR, Gaming Upsell Opportunities User Experience

Intent Definition: Latency Bound

Mission Critical

Ultra Reliable Low Latency
Public Health
Self Driving Cars

Intent Definition: Low Latency

Create your own Slice Industry Verticals Security, 5G

Intent Definition: Flex-Algo

Flex-Algo Constraints Network Slicing

VPN Services Evolution

You make customer experience possible

VPN Services Over Segment Routing

Layer 3 VPN

- Utilizes Multi-Protocol BGP (i.e. no dependency on LDP)
- Segment Routing/Intent Based Forwarding enhances L3VPN Service

Layer 2 VPN

- Point to Point EoMPLS
- Multi-point VPLS/H-VPLS
- If using LDP Signaling, services L2VPN services need to evolve for Segment Routing based network

Point to Point L2VPN → EVPN Evolution

#CLUS

Point to Point L2VPN → EVPN Evolution

Point to Point L2VPN \rightarrow EVPN Evolution

Service Unification Through EVPN*

Application Driven, SDN Ready Transport Network Usecases

You make customer experience possible

A Recipe For Transport SDN

- Network Simplification and intent based transport paves the way
- Individual components for a "Transport SDN" architecture widely available
- Integration between various software components in key
- Applications interact with and actively drive Transport Network

Intent Based SDN Ready Transport

Example1: Centralized Control and Visualization for End-to-End Path

- SR-PCE enables REST API
- External Application gather Topology from SR-PCE
- Visualization includes:
 - Link/Node info
 - SID Allocation
 - Intent Based Path, if defined on nodes/PCE

Example 2: Centrally Computed Low Latency Intent Path **BW Signaling Health Insights** 5. Applications 4. Send Computed 1. Provision Low 3. Perform 2. Request LSP **Updated with new** LSP **Latency Service** Computation Computation LSP

BRKSPG-2014

BRKSPG-2014 56

BRKSPG-2014 57

1. Network
Telemetry Data
(Model/Event)

2. Published on Data Bus for Subscribers 3. Applications Collect Data and Analyze 4. App Takes action, advices NSO

NSO makes n/w changes for continuity 6. PCC Requests new Path from PCE

7. PCE update
Apps with new
path

BRKSPG-2014 58

Summary

You make customer experience possible

SPG Walk-In Labs — Hosted in World of Solutions

- No reservation required, just show up and get hands-on experience
- A great way to get hands-on experience on a lot of topics covered here

Session ID	Title
LABSPG-1020	MPLS Segment Routing Introduction
LABSPG-1327	Introduction to Segment Routing v6 (SRv6) with IOS-XR
LABSPG-2000	Network Slicing with Segment Routing Flex-Algorithm for 5G and other Applications
LABSPG-2001	Intent Based Networking using Segment Routing Traffic Engineering
LABSPG-2068	Configure and Implement BGP-EVPN with Segment Routing using IOS-XR
LABSPG-2109	Ethernet VPN (EVPN) Implementation and Troubleshooting
LABRST-1015	Introduction - Segment Routing for Policy Aware Network

Towards Intent Based Transport SDN Networks!!!

It all starts with Intent Based Programmable Transport

Complete your online session evaluation

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live water bottle.
- All surveys can be taken in the Cisco Live Mobile App.

Cisco Live sessions will be available for viewing on demand after the event at ciscolive.cisco.com.

Continue your education

illiilli CISCO

Thank you

Ciscolive!

You make possible