

The Network Industry Is Changing *=Fast*

"Tsunami of Innovations"

Industry Changes Drive Demand for Carrier Ethernet

Big Data and Cloud

CAPEX/OPEX

Internet of Everything

Mobility

Consumer Video

Business Video

Traffic

Carrier Ethernet Growth Brings Many Challenges

- Network growth;
- Diversity of requirements;
- Off-net customers reach;
- Operational complexity;
- Services differentiation;

Carrier Ethernet 2.0 Aims To Help Service Providers

Expanding and Enhancing Services, Simplifying Operations and Extending Services Reach:

Multiple Classes of Services

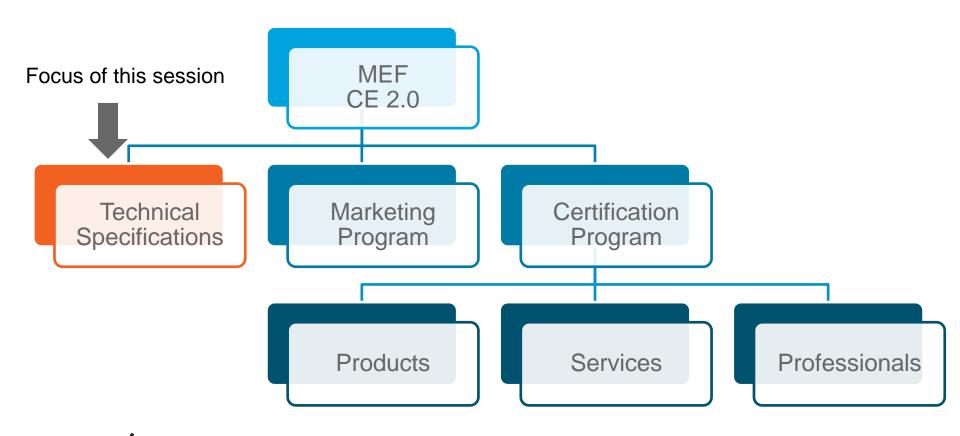
Interconnected Networks

Service Management

Foundation:

+10 years of standards bodies work (MEF, IEEE, ITU-T)

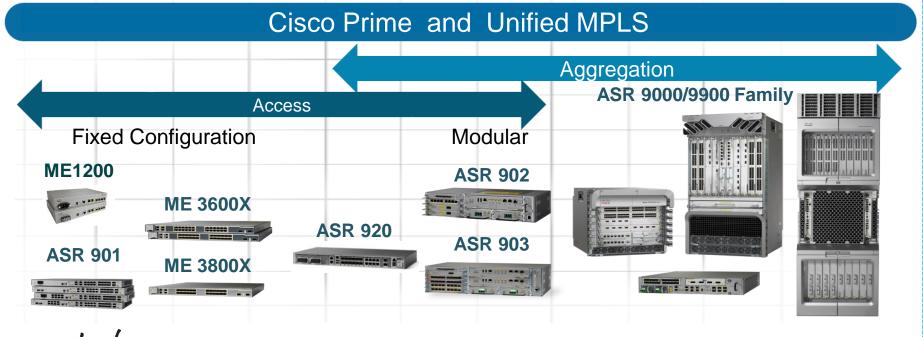
Carrier Industry Best Practices


MEF Specifications and Equipment/Service Certification

Key Applications:

Business Services Mobile Backhaul Wireline Aggregation Access Services Cloud Connectivity

MEF CE 2.0: A Comprehensive Program



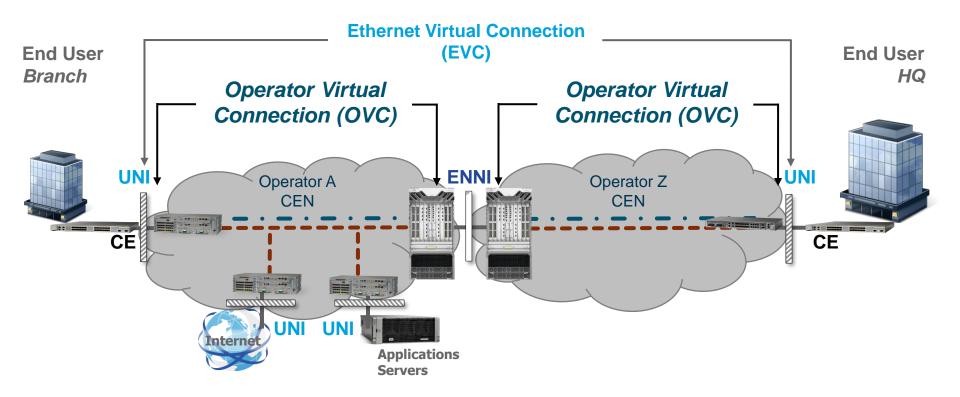
Cisco's Provides the Only CE 2.0 Services Certified End-to-End Solution

Cisco Evolved Programmable Network - EPN

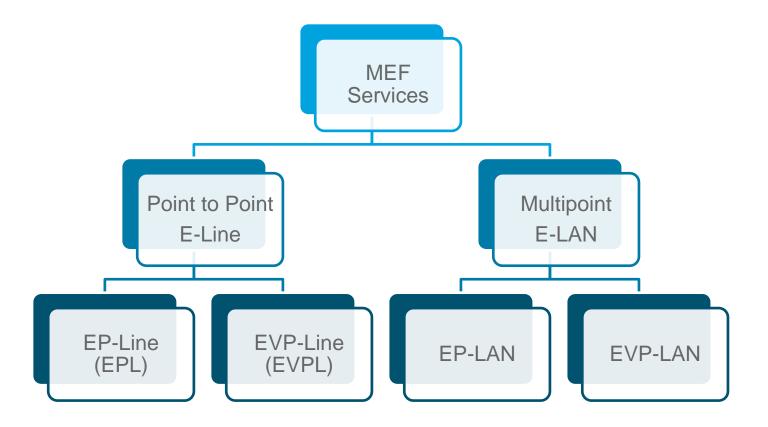
Agenda

- Introduction
- Carrier Ethernet Fundamentals
- Carrier Ethernet 2.0
 - Service Definitions and Enhancements
 - Service Design and Deployment
- Next Gen Carrier Ethernet Architectures
- Conclusion

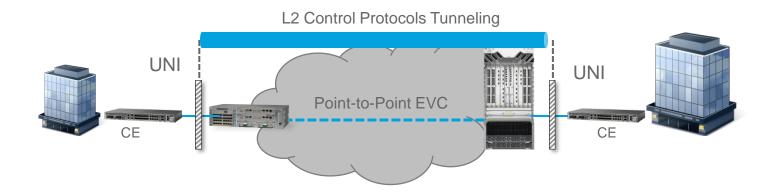
MEF Defines Carrier Ethernet As A Service


Metro Ethernet Forum: industry body that standardized Carrier Ethernet Services.

Carrier Ethernet is a service that is ubiquitous, standard and carrier class, differentiated from classic Ethernet technology by 5 key attributes:



Carrier Ethernet Services Terminology Explained

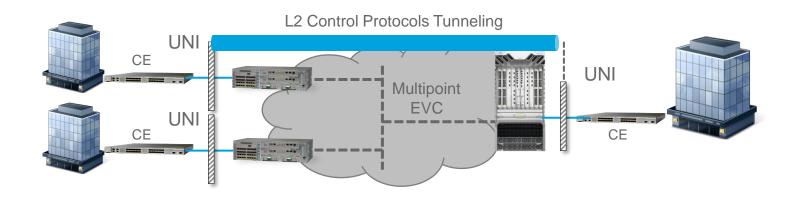


The First Generation of Carrier Ethernet Services

E-Line = Point To Point Ethernet Connectivity

- FPI Ethernet Private Line:
 - Port based;
 - Transparent;
 - Application: TDM Replacement.

- EVPL Ethernet Virtual Private Line:
 - VLAN aware;
 - Allows Service multiplexing and bundling;
 - Application: ATM/FR Replacement.


E-Line Use Cases

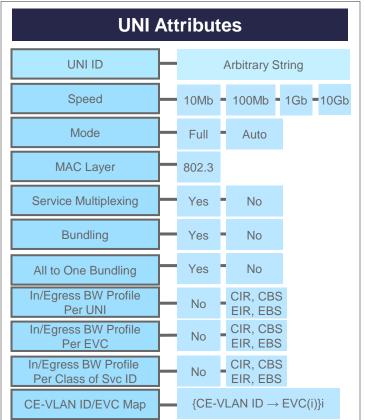
* Note: Bandwidth granularity is transport technology dependent.

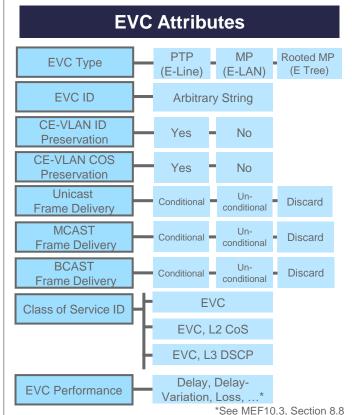
Carrier Ethernet Service	Application	Technical Benefits
EPL	Leased Line Services for: LAN extension; Data Center Interconnect; Voice over IP; Internet Access; Business applications; Collaboration services; Backhaul services Cloud services, and others (TDM replacement)	 Higher interface speeds Fine bandwidth granularity* Interface flexibility* Support for Multiple classes of service Transparency
EVPL	Same as EPL, plus: • Service Multiplexing at Central Location (Frame Relay or ATM Replacement)	 Similar to EPL, with some differences: Adds scalable service multiplexing (4096 VLAN IDs) Less transparent due VLAN processing at UNI.

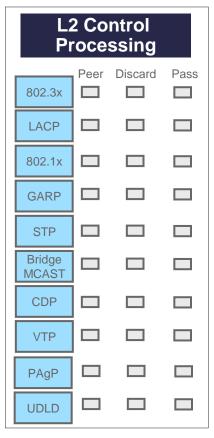
E-LAN = Multipoint Ethernet Connectivity

- EP-LAN Ethernet Private LAN:
 - Port based;
 - Transparent;
 - · Application: LAN emulation or extension.

- EVP-LAN Ethernet Virtual Private LAN:
 - VLAN aware;
 - Service multiplexing and bundling;
 - Application: ATM/FR replacement.

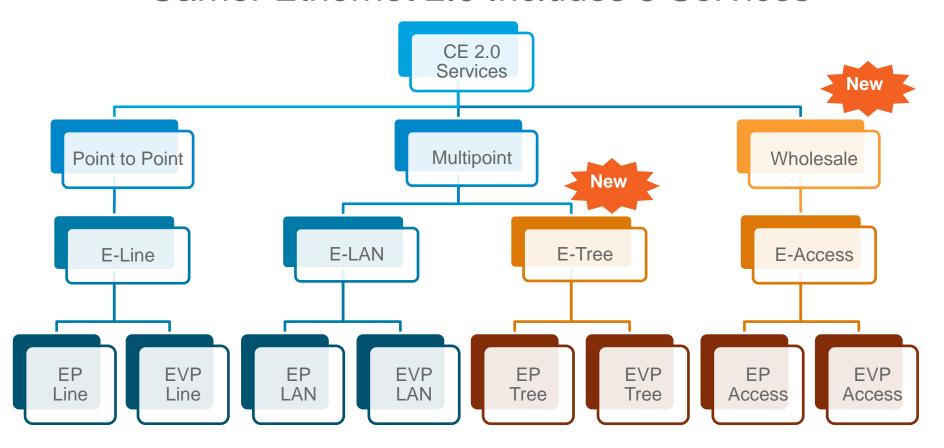

E-LAN Use Cases


* Note: Bandwidth granularity is transport technology dependent.


Carrier Ethernet Service	Application	Technical Benefits
EP-LAN	Multipoint connectivity for: • LAN extension; • Data Center Interconnect; • Business applications; • Collaboration services; • Broadcast and Multicast traffic; • Backhaul services; • Cloud services, and others (LAN Emulation replacement)	 Efficient packet-based multipoint connectivity; Higher interface speeds Fine bandwidth granularity* Interface flexibility* Multiple classes of service support Transparency
EVP-LAN	Same as EP-LAN, plus: • Service multiplexing at central location; (Frame Relay or ATM Replacement)	 Higher interface speeds Bandwidth granularity* Interface flexibility* Multiple classes of service support Scalable service multiplexing (4096 VLAN IDs)

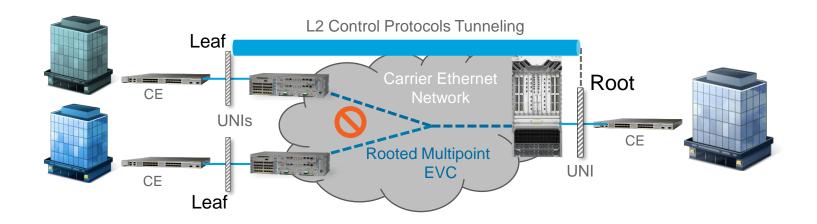
Services Behavior Also Depend On Other Attributes

 $Chart\ provided\ only\ as\ illustration.\ It's\ not\ meant\ to\ represent\ the\ latest\ state\ of\ MEF\ specifications.$



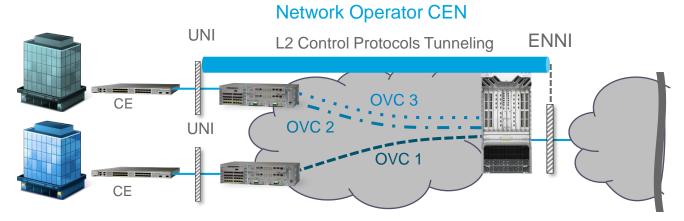
Agenda

- Introduction
- Carrier Ethernet Fundamentals
- Carrier Ethernet 2.0
 - Service Definitions and Enhancements
 - Service Design and Deployment
- Next Gen Carrier Ethernet Architecture
- Conclusion



Carrier Ethernet 2.0 Includes 8 Services

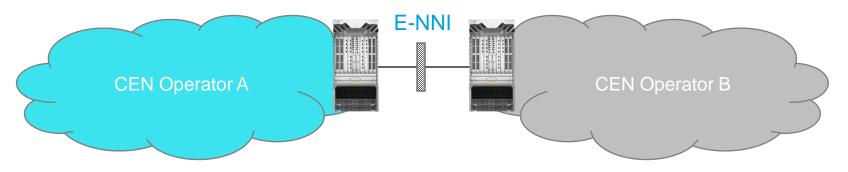
E-Tree Service



- EP-Tree:
 - Port-based at the UNI;
 - High-degree of transparency;

- EVP-Tree:
 - VLAN based service.
 - Service Multiplexing and Bundling at UNI;

E-Access Service


OVC: Operator Virtual Circuit

- Access EPL:
 - Port-based at the UNI;
 - High-degree of transparency;

- Access EVPL:
 - VLAN based service.
 - Service Multiplexing and Bundling at UNI;

Interconnecting Carrier Ethernet Networks with E-NNI

Key Characteristics

- 802.1ad Framing;
- LACP for protection

- Link OAM;
- MTU ≥ 1526 bytes (≥ 2000 bytes recommended).

EP-Line Option 2 Service

Destination MAC	estination MAC Protocol	Ethertype	L2CP Action			
Destination MAC		Subtype	EPL Option 1	EPL Option 2	EP-LAN	EP-Tree
01-80-C2-00-00-00	STP/RSTP/MSTP		MUST Tunnel	MUST Tunnel	MUST Tunnel	MUST Tunnel
01-80-C2-00-00-01	Pause	0x8808	MUST NOT Tunnel	Should Discard	MUST NOT Tunnel	MUST NOT Tunnel
01-80-C2-00-00-02	LACP/LAMP	0x8809/01/02	MUST NOT Tunnel	Should Tunnel	MUST NOT Tunnel	MUST NOT Tunnel
01-80-C2-00-00-02	Link OAM	0x8809/03	MUST NOT Tunnel	Should Tunnel	MUST NOT Tunnel	MUST NOT Tunnel
01-80-C2-00-00-02	ESMC	0x8809/0A	MUST NOT Tunnel	Should Tunnel	MUST NOT Tunnel	MUST NOT Tunnel
01-80-C2-00-00-03	802.1X	0x888E	MUST NOT Tunnel	Should Tunnel	MUST NOT Tunnel	MUST NOT Tunnel
01-80-C2-00-00-04	MAC Specific Control Protocols		MUST NOT Tunnel		MUST NOT Tunnel	MUST NOT Tunnel
01-80-C2-00-00-05	Reserved		MUST NOT Tunnel		MUST NOT Tunnel	MUST NOT Tunnel
01-80-C2-00-00-06	Reserved		MUST NOT Tunnel		MUST NOT Tunnel	MUST NOT Tunnel
01-80-C2-00-00-07	E-LMI	0x88EE	MUST NOT Tunnel	MUST Tunnel	MUST NOT Tunnel	MUST NOT Tunnel
01-80-C2-00-00-08	Provider Bridge Group Address		MUST NOT Tunnel		MUST NOT Tunnel	MUST NOT Tunnel
01-80-C2-00-00-09	Reserved		MUST NOT Tunnel		MUST NOT Tunnel	MUST NOT Tunnel
01-80-C2-00-00-0A	Reserved		MUST NOT Tunnel		MUST NOT Tunnel	MUST NOT Tunnel
01-80-C2-00-00-0B	Reserved		MUST Tunnel		MUST Tunnel	MUST Tunnel
01-80-C2-00-00-0C	Reserved		MUST Tunnel		MUST Tunnel	MUST Tunnel
01-80-C2-00-00-0D	Provider Bridge MVRP Address		MUST Tunnel		MUST Tunnel	MUST Tunnel
01-80-C2-00-00-0E	LLDP	0x88CC	MUST NOT Tunnel	MUST Tunnel	MUST NOT Tunnel	MUST NOT Tunnel
01-80-C2-00-00-0E	PTP Peer Delay	0x88F7	MUST NOT Tunnel	MUST Tunnel	MUST NOT Tunnel	MUST NOT Tunnel
01-80-C2-00-00-0F	Reserved		MUST Tunnel		MUST Tunnel	MUST Tunnel
01-80-C2-00-00-20 through 01-80-C2-00-00-2F	GARP/GMRP		MUST Tunnel	MUST Tunnel	MUST Tunnel	MUST Tunnel

Source: MEF 6.1.1 Specification

Carrier Ethernet 2.0 Features: Standardized Multiple Classes Of Service

Why Deploy Multi-CoS for Carrier Ethernet?

- Allows improved network utilization;
- Allows improved network monetization;
- Provides better application performance;
- Enables service differentiation;
- Some customers demand it.

Why Deploy **Standardized** Multi-CoS Model?

- Industry expertise;
- Simple yet flexible model;
- Common terminology;
- Consistency;
- Reference values for Service-Level-Specifications (SLS).

MEF CE 2.0 Introduces a Simple 3 CoS Model

CoS Label	Bandwidth Profile Constraint	Example Application
Н	CIR > 0 EIR ≥ 0	Voice over IP Synchronization
M	CIR > 0 EIR ≥ 0	Protocol Signaling Business Applications
L	CIR ≥ 0 EIR ≥ 0	Web Traffic

Traffic mapping based on one of the possible CoS IDs:

UNI, EVC/OVC EP, 802.1Q PCP or DSCP

Carrier Ethernet Service Performance Metrics

FD	Frame Delay, in milliseconds.
MFD	Mean Frame Delay, in milliseconds.
IFDV	Inter-frame Delay Variation, in milliseconds.
FDR	Frame Delay Range, in milliseconds.
FLR	Frame Loss Ratio, in percentile.

Classes of Services And Performance Tiers

- Performance Tiers (PT) and Service Level Specifications (SLS):
 - Performance Tiers provide pre-defined SLS metrics and values.
- There are 4 Performance Tiers*:
 - PT1: Metro (250 km / 155 mi)
 - PT2: Regional (1,200 km / 745 mi)
 - PT3: Continental (7,000 km / 4,350 mi)
 - PT4: Global (27,500 km / 17,090 mi)
- May be applied to an EVC or OVC.

^{*}Note: Distances are provide as reference.

Carrier Ethernet 2.0 Features: Service Management

The Need for Service level OAM

- Native tools available for IP level monitoring and troubleshooting
- Service level tools are not natively available
- Service OAM Provided Operational efficiency (OpEx);
 - Faster and easier troubleshooting;
 - Pro-active vs reactive operations;
- Provides SLS compliance;
 - Monitoring;
 - Reporting;


Mapping Ethernet OAM Building Blocks To Functional Layers

Note: Y.156sam (Y.1564) is not an OAM layer, but assessment that a Service is delivered to specification.

Ethernet OAM

802.3ah Link OAM

ELMI

CFM 802.1ag /w Ethernet Fault Detection

Y.1731 Fault Management

Performance Monitoring

Y.1731 Delay Measurement

Y.1731 SLM and LMM

IP SLA

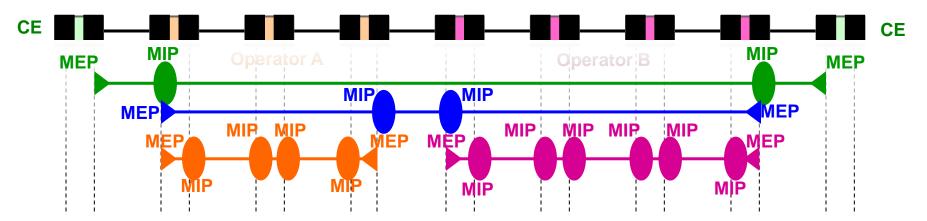
Interworking

CFM-ELMI 802.3ah-CFM

Integrated Service Management with SLA Reporting

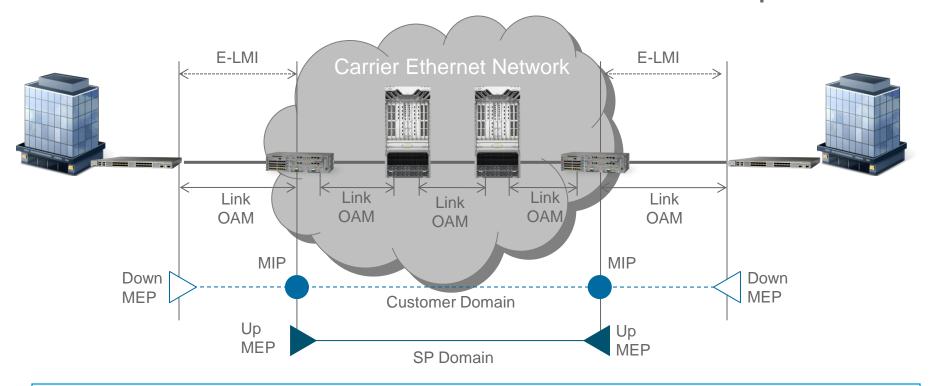
OAM Concepts

Management Entity Group



- Defined by Operational/Contractual Boundaries
 - e.g. Customer / Service Provider / Operator
- MEG may nest and touch
- Up to eight levels of "nesting": MEG Level (0..7)
 - The higher the level, the broader its reach

OAM Concepts


Maintenance End Points, Maintenance Intermediate Point

- Maintenance Association End Point (MEP)
- Define the boundaries of a MD
- Support the detection of connectivity failures between any pair of MEPs
- Can initiate and respond to PDUs

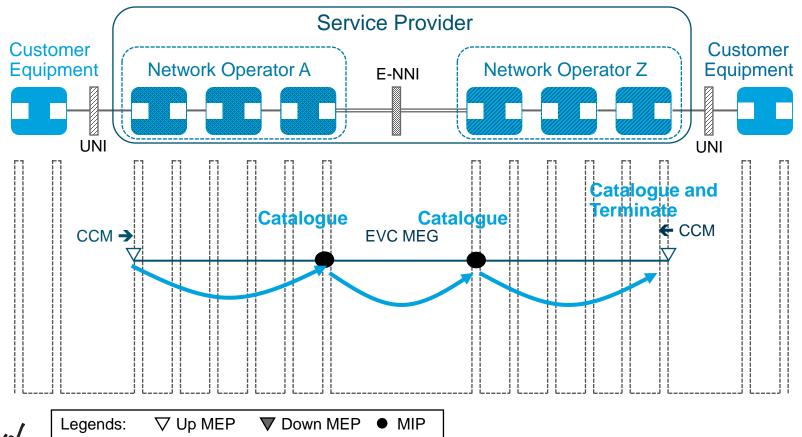
- Maintenance Domain Intermediate Point (MIP)
- Support the discovery of paths among MEPs and location of faults along those paths
- Can be associated per MD and VLAN/EVC
- Can add, check and respond to received PDUs

An End-to-End Ethernet OAM Example

MEP: Maintenance End Point

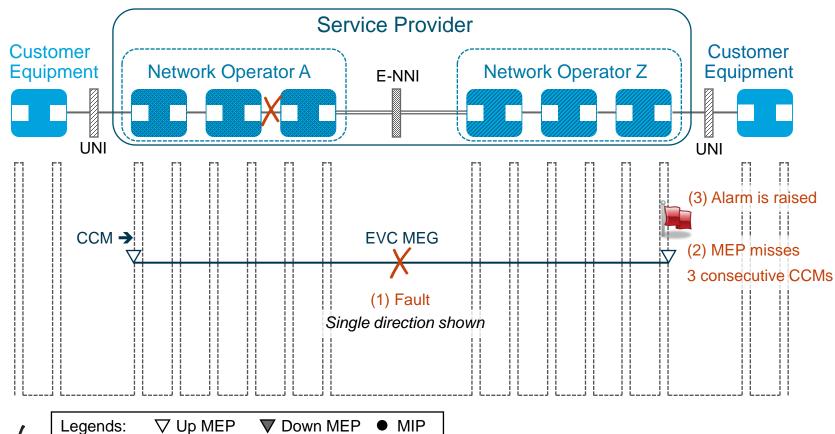
MIP: Maintenance Intermediate Point

E-LMI: Ethernet Local Management Interface

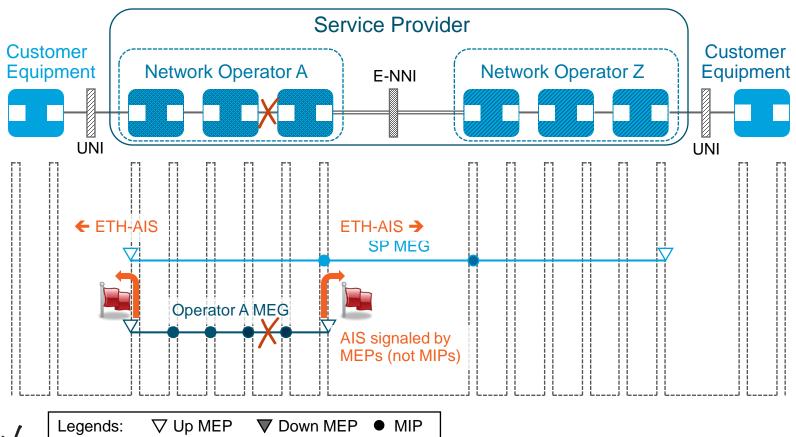


CE 2.0 Fault Management Functions

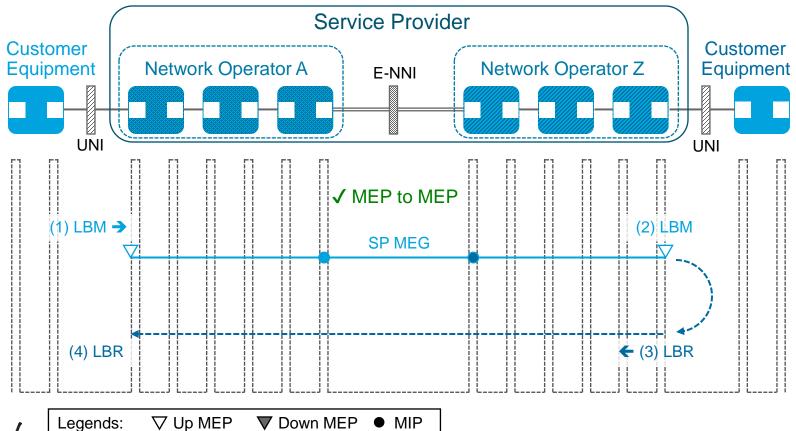
ETH-CC Ethernet Continuity Check. ETH-LB Ethernet Loopback. Ethernet Linktrace. ETH-LT **ETH-RDI** Ethernet Remote Defect Indication. **ETH-AIS** Ethernet Alarm Indication Signal. **ETH-LCK** Ethernet Locked Signal.



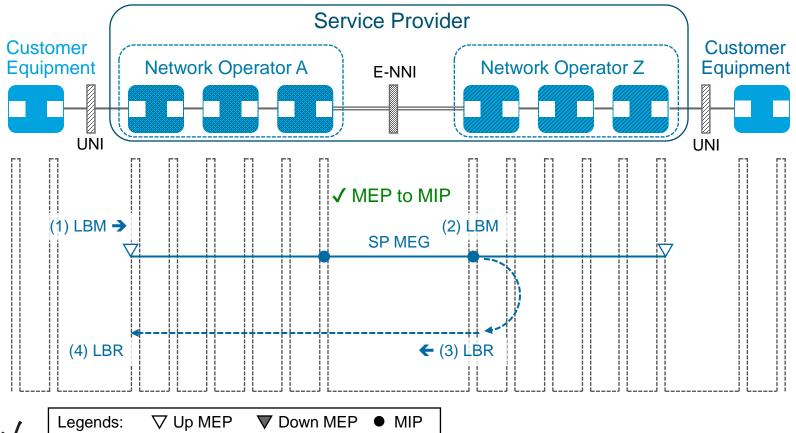
CE 2.0 Fault Management: Ethernet Continuity Check

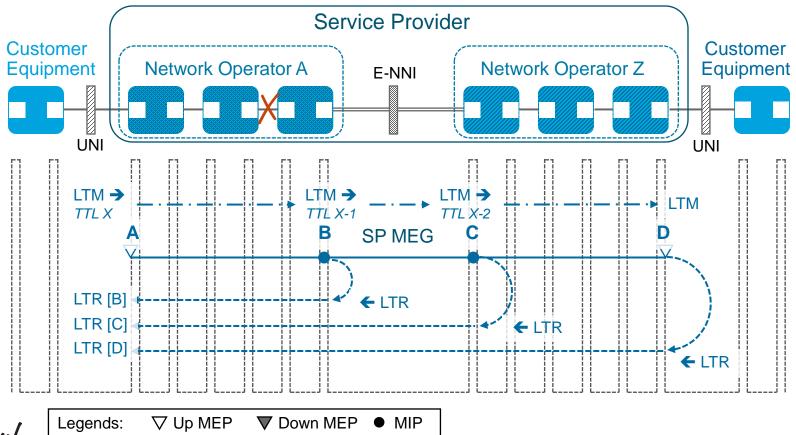


Ethernet Continuity Check In Action

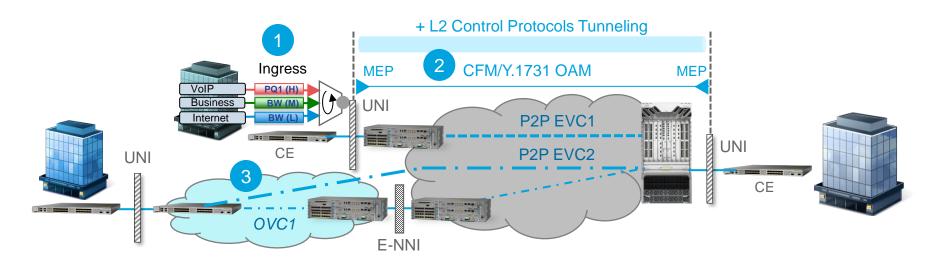


Ethernet Alarm Indication Signal (AIS) In Action



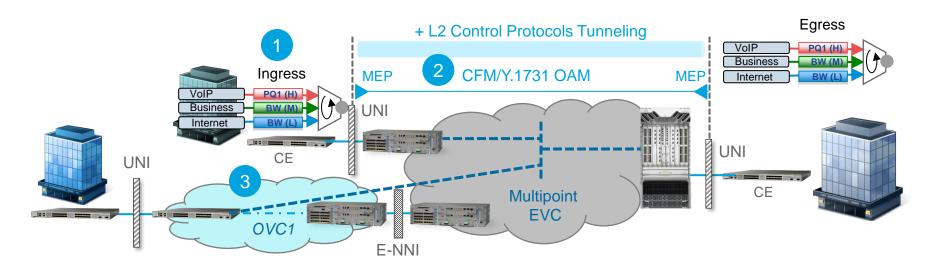


Ethernet Loopback (a.k.a. L2 Ping) In Action


Ethernet Linktrace (a.k.a. L2 Traceroute) In Action

Agenda Introduction Carrier Ethernet Fundamentals Carrier Ethernet 2.0 Service Definitions and Enhancements Service Design and Deployment Next Gen Carrier Ethernet Architectures Conclusion

E-Line with CE 2.0


- Multiple Classes of Service:
 - Up to 3 Classes of Services;
 - Reference values for SLS.

- 2. Service OAM:
 - Fault Management.

- 3. Extended service coverage:
 - E-NNIs;
 - · E-Access.

E-LAN with CE 2.0

- Multiple Classes of Service:
 - Up to 3 Classes of Services;
 - · Reference values for SLS.
 - Egress traffic management.

- 2. Service OAM:
 - Fault Management.

- 3. Extended service coverage:
 - E-NNIs;
 - E-Access.

Many Technologies Support Carrier Ethernet

Transport Encapsulation

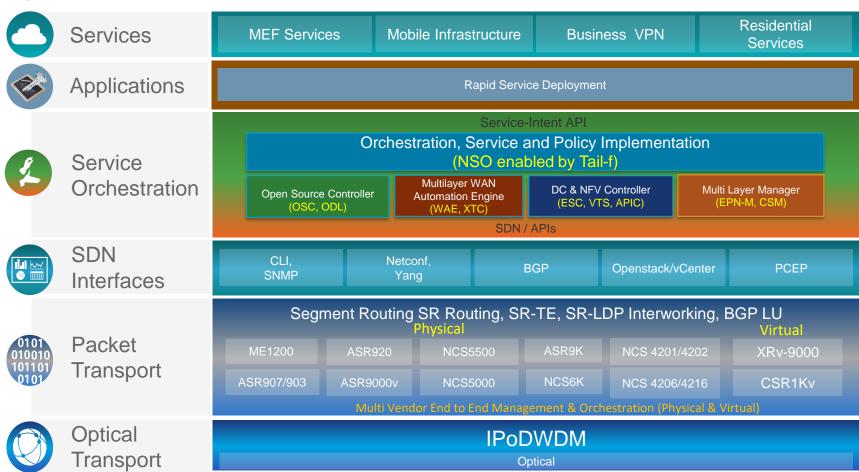
Control Plane

L0/L1 Transport (EoSONET/SDH, OTN, DWDM)

EMS/NMS + SNCP/MS-SPRing ASON/WSON, GMPLS

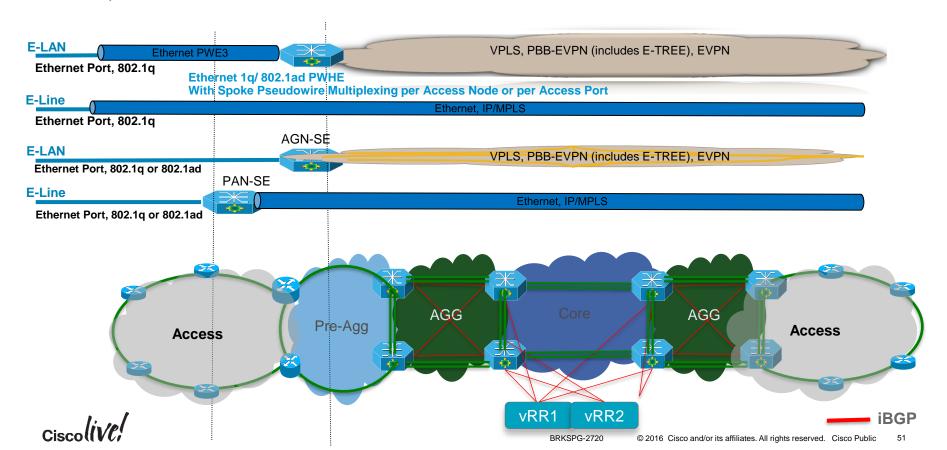
L2 Bridging (QinQ, 802.1ad, PBB)

xSTP, REP, others G.8031, G.8032

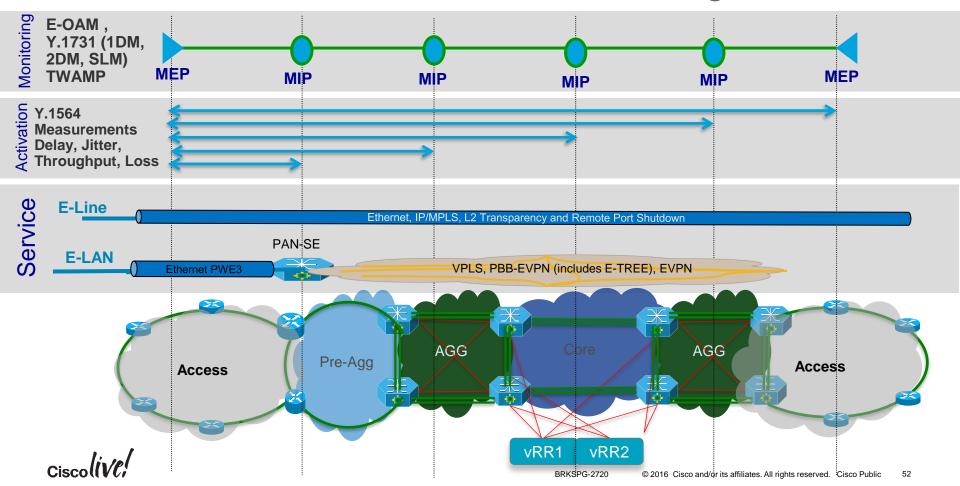

MPLS Switching (MPLS-TP, PW, VPLS, EVPN)

IP/MPLS (IGP, LDP, RSVP, BGP) SR, GMPLS, EMS/NMS

+ various access (wireless, wireline, cable) and tunneling technologies.



Cisco EPN Framework



MEF Services in an EPN Environment

MPLS, Ethernet and/or nV Access Network

MEF Services: Activation and Monitoring

Agenda

- Introduction
- Carrier Ethernet Fundamentals
- Carrier Ethernet 2.0
 - Service Definitions and Enhancements
 - Service Design and Deployment
- Next Gen Carrier Ethernet Architectures
- Conclusion

The Future Of Carrier Ethernet

- Faster;
- Simpler;
- Dynamic;
- Programmable;
- Orchestrated;

The Future of Carrier Ethernet At MEF

Agile

- Rapidly introduce new, on-demand services
- Leverage MEF API's for Orchestration
- SDN and NFV helps, but SP operational transformation is key

Assured

- Subscribers expect consistent performance and security assurances also key
- Require authentication and authorization as well as an audit trail

Orchestrated

- Dynamic and Automated services lifecycle
- Use of API's and Models that provide technology abstraction

LSO

Fulfillment | Performance | Control | Assurance Usage | Analytics | Security | Policy

NFV

Service Definitions, Information Model, APIs

Network Infrastructure SDN

Existing WAN

LSO – Lifecycle Services Orchestration

Protocols Evolution Impacting Carrier Ethernet Autonomic, Simplified/Optimized and Self-protected SR Transport

Service protocols

RFC 3107
BGP (opt)
RSVP-TE

Transport protocols

IGP
IP

Keep the existing MPLS data plane and the forwarding features

→ support existing service and SLA

Simplify the control plane and optimize the routing path

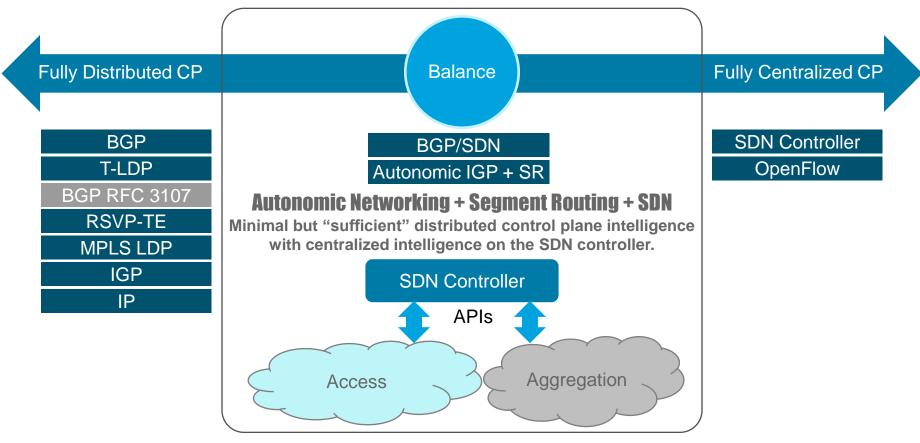
The ACE Architecture Framework

Orchestration and Controller

Network controller and End-to-End orchestration

Consolidated VPN Service (Overlay)

Common L2VPN/L3VPN operational mode across SP and DC


Application-engineered Routing (Underlay)

Simple, Self-protected (TI-LFA), Application-engineered

ACE
Agile Carrier
Ethernet

Agile Carrier Ethernet Networks


Key Takeaways

- Carrier Ethernet market growth brings new challenges;
- MEF CE 2.0 expands and enhances services, simplifies operations and extends services reach with:
 - New services with certification;
 - Interconnected Networks;
 - Standardized Multi-CoS;
 - Service Management;
- Future of Carrier Ethernet: Lifecycle Services Orchestration (MEF LSO SDN, NFV, Orchestration).

Complete Your Online Session Evaluation

- Give us your feedback to be entered into a Daily Survey Drawing. A daily winner will receive a \$750 Amazon gift card.
- Complete your session surveys through the Cisco Live mobile app or from the Session Catalog on CiscoLive.com/us.

Don't forget: Cisco Live sessions will be available for viewing on-demand after the event at CiscoLive.com/Online

Please join us for the Service Provider Innovation Talk featuring:

Yvette Kanouff | Senior Vice President and General Manager, SP Business Joe Cozzolino | Senior Vice President, Cisco Services

Thursday, July 14th, 2016 11:30 am - 12:30pm, In the Oceanside A room

What to expect from this innovation talk

- Insights on market trends and forecasts
- Preview of key technologies and capabilities
- Innovative demonstrations of the latest and greatest products
- Better understanding of how Cisco can help you succeed

Register to attend the session live now or watch the broadcast on cisco.com

Continue Your Education

- Demos in the Cisco campus
- Walk-in Self-Paced Labs
- Lunch & Learn
- Meet the Engineer 1:1 meetings
- Related sessions

Thank you

cisco

